中大3D顯微鏡 記錄細胞互動

目前傳統顯微鏡不能解析活體組織中複雜的細胞網絡,只能提供平面影像,限制了科學家對神經細胞的結構和網絡,以及細胞之間信號傳遞模式的了解,窒礙了相關醫學研究。為了打破局限,中大工程學院機械與自動化工程學系團隊研發出全球首台「數碼全息雙光子激發」(DH-TPE)顯微鏡,可超高速拍攝活體神經細胞的3D影像,記錄神經細胞之間的互動,成本亦較商用的雙光子(TPE)顯微鏡低三分之一。目前團隊正與中大醫學院合作,共同研究青光眼的發病機制。

Date: 
Thursday, June 14, 2018
Media: 
Wen Wei Po

中大研3D顯微鏡揭青光眼成因

青光眼是頭號致盲殺手,惟礙於傳統顯微鏡所限,難以作詳細的細胞研究。中大工程學院機械與自動化工程學系陳世祈教授及其團隊,最近成功將三維全息影像技術引入雷射顯微鏡,研發出首台「數碼全息雙光子激發」(DH-TPE)顯微鏡,有助科學家研究青光眼等視覺神經疾病的成因。

Date: 
Thursday, June 14, 2018
Media: 
Headline Daily

掃描3D成像顯微鏡助診青光眼 中大研發全球首台

青光眼是全球導致失明不可逆轉的主要原因,惟因傳統顯微鏡只能做到平面掃描,不能有效分析立體細胞組織的病變原因。中大工程學院將三維全息影像技術引入鐳射顯微鏡,研發出全球首台「數碼全息雙光子激發」(DH-TPE)顯微鏡,可掃描視網膜立體成像,相信未來可有效追蹤及診斷青光眼病變成因。

Date: 
Thursday, June 14, 2018
Media: 
Sky Post

中大金融科技課程 培育開發AI專才

政府大力推動金融科技發展,中文大學開辦全港首個四年制金融科技學士學位課程。中大金融科技專業應用教授王澤基期望,學生同時掌握工程、數學、金融及媒體分析等跨學科能力,掌握開發金融科技AI系統的技術。有就讀學生指,實習時留意到業界對金融科技人才需求殷切。

Date: 
Thursday, June 7, 2018
Media: 
Sing Tao Daily

香港人工智慧專家黃錦輝:冀更多港青加入科研

香港中文大學系統工程與工程管理學系教授黃錦輝近日在港接受中新社記者採訪時表示,希望更多香港青年投身於創科行業研究,以提升香港在人工智慧行業的國際競爭力。
中國人工智慧學會(CAAI)智庫於今年5月在北京落地,設立“自然語言處理與理解”、“知識工程”、“機器人”等六大專業方向智庫。黃錦輝作為“自然語言處理與理解”組別專家,入選61位首批智庫專家名單,也是該名單中唯一一位香港土生土長的學者。
 
Date: 
Tuesday, June 12, 2018
Media: 
China News Service

中大助港成亞洲AI研發基地

科技發展正朝人工智能(AI)方向推進,上月初北京成立半官方機構「中國人工智能學會」智庫,本港中大工程學院副院長(外務)兼創新科技中心主任黃錦輝獲邀為首批專家之一,更是唯一土生土長的香港人。
黃受訪分享本港AI發展,指中大致力六大範疇研發,包括其專長的語言訊息檢索和社交媒體分析、人臉辨識、機械人等,他會利用成為智庫成員的機會把本港的科研成果通過智庫推向國際,冀助香港成為亞洲AI研發基地。
Date: 
Wednesday, June 13, 2018
Media: 
Hong Kong Economic Journal

國家AI學會 中大學者入選

中國人工智能學會智庫上月公布專家名單,中大工程學院副院長兼創新科技中心主任黃錦輝(圖)是唯一入選本港學者,他將與世界各地專家交流,推動中國人工智能長遠發展。

Date: 
Wednesday, June 13, 2018
Media: 
Ming Pao Daily News

學者:香港在國家人工智慧發展中擔當重要角色

據香港《文匯報》消息,在剛公佈的中國人工智慧學會(CAAI)智庫專家名單中,香港中文大學工程學院副院長(外務)兼創新科技中心主任黃錦輝入選為自然語言處理與理解組別專家,成為唯一入選的香港土生土長的學者,將為國家人工智慧的長遠發展出謀獻策。

 

Date: 
Wednesday, June 13, 2018
Media: 
China News Service

「港產」學者為神州AI獻策

在剛公佈的中國人工智能學會(CAAI)智庫專家名單中,香港中文大學工程學院副院長(外務)兼創新科技中心主任黃錦輝入選為「自然語言處理與理解」組別之專家。首批入選專家共有61人,黃是唯一本港土生土長的學者,他將與一眾內地及海外院士、科研院所資深研究員及全球知名大學教授互相交流,為中國人工智能的長遠發展出謀獻策。

Date: 
Wednesday, June 13, 2018
Media: 
Wen Wei Po

Prof. Chen Shih-Chi Develops Ultrafast Microscope to Help Tackle Glaucoma and Other Neurological Diseases

Date: 
2018-06-14
Thumbnail: 
Body: 

A microscope that may help the study of neurological diseases has been developed at The Chinese University of Hong Kong (CUHK). A team led by Prof. Shih-Chi Chen, Associate Professor in the Department of Mechanical and Automation Engineering at CUHK, has recently developed the first digital holography-based (DH) two-photon excitation (TPE) microscope to generate simultaneous video-rate fluorescent imaging and multi-point optical stimulation. This allows the tracking of nerve cells activities and thus may help the study of neurological diseases, such as glaucoma, a very common eye disease. 

By scanning the retinal ganglion cells using the DH-TPE microscope, scientist can understand the molecular mechanisms of optic nerve degeneration in glaucoma and find ways to tackle it. Prof. Chen’s team is now working on this project with Prof. Christopher Kai Shun Leung, Professor, Department of Ophthalmology and Visual Sciences at the Faculty of Medicine at CUHK, and the Hong Kong Eye Hospital. 

3-D imaging tracks inter-cells activities which helps the study of glaucoma

The DH-TPE microscope is powered by a digital micromirror device (DMD), a chip used in our everyday projector that contains millions of micromirrors switching at tens of kilohertz speed. By controlling the amplitude and phase of the input laser via binary holograms and the fast-switching micromirrors, the laser beam can be split into up to 20 focal points for simultaneous optical stimulation and real-time fluorescent imaging. Each focus can be independently controlled to scan along arbitrarily defined paths or surfaces at 22.7 kHz. More importantly, the DMD-scanner is also an ultrafast beam shaper, and by superposing the scanning and wavefront-correction holograms, the point spread function can be engineered or even shaped into other novel beam modes to achieve efficient 3-D imaging. Compared to state-of-the-art commercial TPE microscopes, the DH-TPE microscope presents a suite of distinctive imaging functionalities that have never been realised in the past, including (1) random-access imaging, (2) multi-plane imaging, (3) 3-D programmable imaging plane, (4) point-specific wavefront correction, and (5) simultaneous video-rate fluorescent imaging and multi-point optical stimulation. 

Through funding support from the Innovation and Technology Commission (ITC), Prof. Chen’s team is setting up the DH-TPE microscope at the Hong Kong Eye Hospital, collaborating with a team led by Prof. Christopher Kai Shun Leung. The two teams are working together to exploit the unique capability of the DH-TPE microscope to study and understand the basic mechanisms of a few important diseases. 

For example, one objective is to study metabolic dysfunction in the retinal ganglion cells via in vivo two-photon imaging to study the molecular mechanisms of optic nerve degeneration in glaucoma. Glaucoma, characterised by progressive loss of retinal ganglion cells, is the leading cause of irreversible blindness worldwide with a significant social and economic burden. The reduced form of nicotinamide adenine dinucleotide (NADH) is an intrinsic fluorophore and a co-factor in major metabolic pathways for energy production. The levels of NADH decrease in the retinal ganglion cell following optic nerve injury and the imaging of NADH fluorescence intensity can serve as a non-invasive indicator of retinal ganglion cell death in glaucoma. The unique design of the DH-TPE microscope allows point-specific wave-front correction of ocular aberration that will facilitate non-invasive, label-free imaging of the retina. The investigation of metabolic dysfunction of retinal ganglion cells will provide mechanistic insights into the development of neuroprotective and neuroregenerative therapies for patients with glaucoma and non-glaucomatous optic neuropathies.

 

(from left) Prof. Christopher Kai Shun Leung and Prof. Shih-Chi Chen

Prof. Chen's research team

The DH-TPE microscope is powered by a digital micromirror device.

 

 

 

Filter: Dept: 
Faculty
MAE
Media Release

Pages